
Joint Resource Allocation and User Scheduling

Scheme for Federated Learning

Jinglong Shen∗, Nan Cheng∗†, Zhisheng Yin‡ and Wenchao Xu§

∗School of Telecommunications Engineering, Xidian University, Xi’an, China
†State Key Lab. of ISN, Xidian University, Xi’an, China

‡School of Cyber Engineering, Xidian University, Xi’an, China
§Department of Computing, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong

Email: jlshen@stu.xidian.edu.cn, dr.nan.cheng@ieee.org, zsyin@xidian.edu.cn, wenchao.xu@polyu.edu.hk

Abstract—This paper investigates the impact of communication
factors on the convergence performance of federated learning
(FL) in wireless networks. Considering the limited communica-
tion resources in wireless networks, it is difficult to schedule
all users to participate in a comprehensive training and the
convergence performance of training model relies much on the
user scheduling scheme. To minimize the maximum update delay
of user training, we propose a joint resource allocation and
user scheduling scheme in this paper. Particularly, the user
communication delay and user training results are jointly consid-
ered to dynamically schedule users and allocate communication
resources. Simulation results show that the convergence time can
be reduced by 41.6% compared with the random scheduling
allocation scheme.

I. INTRODUCTION

Traditional centralized machine learning (ML) algorithms

require a server in the data center to collect data set from all

users. However, it will bring a lot of communication overhead

when delivers the user’s data set and which may infringe the

user’s privacy. In order to train the model without collecting

the user’s data set, a distributed machine learning method

called federated learning (FL) is proposed [1]. FL enables

distributed users to collaborate with each other for training

and protect user privacy by only sharing model parameters. In

addition, by transmitting the slight-weight model parameters

instead of the user’s data set, it can effectively reduce the com-

munication overhead. However, due to limited communication

resources, we may only be able to select a portion of users to

participate in the distributed training when deploying FL in a

wireless network [2]. Besides, the instability of the channel in

the wireless network degrades communication quality. Thus,

the communication delay caused by this for model parameters

transmission cannot be ignored and the high communication

delay will greatly reduce the convergence performance of

FL. Especially for some time-sensitive application scenarios,

such as autonomous driving and VR which generally holds

restrictive constraint of the time for updating model [3]–[5].

Therefore, it is significant to consider optimizing resource

allocation and user scheduling in the training process under
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the premise of ensuring the accuracy of the model to improve

the convergence performance of FL [6].

Recently, some related works have studied the deployment

of FL in wireless networks. To better adapt dynamic bandwidth

and unreliable networks when performing FL. A joint learning

architecture for cloud-edge-clients called Cecilia is proposed

with an new algorithm called adaptive compressed federated

learning (ACFL). ACFL adopts an information sharing method

different from traditional FL, which can adaptively compress

the shared information according to network conditions [7].

Besides, a problem of joint power and resource allocation of

ultra-reliable low-latency communication (URLLC) is investi-

gated in [8]. A FL protocol called FedCS is proposed in [9],

which collects the required information in the pre-resource

request step and assists the subsequent participant selection

process. In addition, Hybrid-FL protocol has been further

extended from FedCS, which alleviates the problem that the

data sets of each participant are not i.i.d. by constructing

an approximately i.i.d. data set [10]. By using reinforce-

ment learning, an asynchronous FL scheme based on hybrid

blockchain is proposed in [11] and the deep reinforcement

learning is adopted to select participating nodes. In [12], the

deep Q-learning is adopted to optimize the resource allocation

for the model training process which is better adapt to the

complex and changeable environment. A FEDL algorithm

is proposed in [13] which can handle heterogeneous data

among users and the issues of resource allocation from the

perspective of optimization is also discussed. To optimize the

convergence rate of the training process, a user scheduling

and resource allocation scheme is proposed in [14]. However,

only resource allocation is optimized, and the user scheduling

mechanism doesn’t consider the actual spatial location of the

user. Similarly, the user scheduling and resource allocation are

considered in [15] and the loss function of FL is optimized.

However, this scheme sacrifices the speed of convergence to

obtain higher model accuracy.

In this paper, a novel user scheduling and resource allocation

scheme is proposed and an optimization problem is formulated

to minimize the maximum update delay. We investigate the

user’s contribution to the model convergence through the norm

of gradient calculated by the user, and the corresponding

penalty term is included in our objective function. Particularly,
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the user’s communication rate and the user’s contribution are

simultaneously considered. Specifically, we convert the primal

optimization problem into a mixed integer linear programming

problem. During the training process, the branch and bound

algorithm is used to achieve a dynamic user scheduling and

resource allocation. The scheme is flexible and can be applied

to a variety of wireless communication systems with limited

communication resources, such as IoT networks and wireless

cellular networks. Finally, the simulations are conduct to

evaluate the convergence performance of FL and the results

show that our proposed user scheduling and resource alloca-

tion scheme can significantly improve the model convergence

speed while guaranteeing the accuracy of the model.

II. SYSTEM MODEL

Fig. 1. Joint resource allocation and user scheduling scheme for FL.

Fig. 1 shows the scenario of FL in wireless network, which

contains a base station (BS) and a users set U with U users.

Particularly, all the users and the BS can cooperate with each

other to perform FL to train a model. Each user holds a data set

containing Di training samples and each sample is consisted

of a network input xid and its corresponding label yid. The

data sets held by each user are assumed to be independent of

each other with following the identical distribution. Then the

training process of FL can be regarded as solving the following

optimization problem

min
w

g
µ

1

D

U
∑

i=1

Di
∑

d=1

l(wg
µ,xid,yid), (1)

where D =
∑U

i=1 Di denotes the total number of data samples

held by all users, wg
µ represents the global model in the

training process after server aggregation, and l(wg
µ,xid,yid)

represents the loss function used to measure the difference

between the model output and the label during the training

process.

A. Federated Learning Model

Defining the local model obtained by any user i in any

round of iterative µ training as wl
i,µ, the aggregated global

model can be represented as

wg
µ =

U
∑

i=1

wl
i,µ

si,µDi
∑U

j=1 sj,µDj

, (2)

where
si,µDi

∑

U
j=1

sj,µDj
is the weight of local model aggregation,

wl
i,µ is the local model and which depends on the specific

training algorithm adopted by users, and sµ = [s1,µ; · · · ; sU,µ]
denotes the user’s scheduling vector, si,µ ∈ {0, 1}. If si,µ = 1,

it means that the user i is scheduled in the µth iteration, and the

user will send the trained model wl
i,µ to the BS, and si,µ = 0

means that the user i is not scheduled.

When the gradient descent is used to update the global

model wg
µ, the update process of the local model can be

written as

wl
i,µ = w

g
µ−1 −

λ

Di

Di
∑

d=1

∇l(wg
µ−1,xid,yid), (3)

where λ is the learning rate, and ∇l(wg
µ−1,xid,yid) is the

gradient of the loss function l(wg
µ−1,xid,yid) with respect to

w
g
µ−1.

B. Uplink Model

In the uplink, OFDMA is adopted for multiple users to

access. Assuming that the total available resource block (RB)

at the BS is R, and at most each user can only be allocated

by one RB. Therefore, the uplink rate of the user i in the µth

iteration can be given as

vi(ai,µ) =
R
∑

n=1

ain,µB log2

(

1 +
Phi,µ

In,µ +BN0

)

, (4)

where P is the transmit power of user, ai,µ =
[ai1,µ; · · · , aiR,µ] is the resource allocation vector of the ith

user in the µth iteration, i.e., ain,µ ∈ {0, 1}, hi,µ is the channel

gain from the user to BS, B is the bandwidth of a RB, N0 is

the noise power spectral density, and In,µ is the interference

between users with using the same RB in other cells.

C. Maximum Update Delay Definition

Since local model wl
i,µ and global model wg

µ have the same

number of parameters, the local model wl
i,µ and global model

wg
µ have the same size. By denoting the number of bits that

the user needs to transmit when sending wl
i,µ to the BS as the

size of the local model Z, the uplink communication delay of

user i is

ti(ai,µ) =
Z

vi(ai,µ)
, (5)

In the µth iteration, the time required for the user and the BS

to obtain an updated model is

τµ(sµ,Aµ) = max
i∈U

{

si,µ(ti(ai,µ) + T i
comp)

}

, (6)

where Aµ = [a1,µ, · · · ,aU,µ], T i
comp is the time spent on

user training. Particularly, si,µ = 0 means that the user i will

not send the local model trained by himself to the BS in the

µth iteration. Therefore, the user i will not cause any delay

in this iteration. When si,µ = 1, the user i will send the local

model trained by himself to the BS, which will cause delay

ti(ai,µ)+T i
comp. Therefore, the above formula represents the

maximum delay among all scheduled users.
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III. PROBLEM FORMULATION

To minimize the maximum update delay, we jointly opti-

mize the user scheduling and resource allocation, which can

be formulated as

min
sµ,Aµ

τµ(sµ,Aµ) = min
sµ,Aµ

max
i∈U

(si,µti(ai,µ)) (7)

s.t. ain,µ ∈ {0, 1} , ∀i ∈ U , n = 1, · · · , R, (7a)

si,µ ∈ {0, 1} , ∀i ∈ U , (7b)
∑

i∈U

ain,µ ≤ 1, ∀n = 1, · · · , R, (7c)

R
∑

n=1

ain,µ = si,µ, ∀i ∈ U , (7d)

U
∑

i=1

si,µ = ζ, (7e)

where (7a) and (7b) are 0-1 constraints of the optimization

variables; (7c) ensures that a RB can only be consumed by

one user at most; (7d) ensures only one RB can be allocated

to the scheduled user; (7e) specifies ζ users will be scheduled

in each iteration. Since we do not consider the heterogeneity

of the computing power of each user, we remove the term of

the calculation time in the objective function.

To solve the problem in (7), we introduce a new variable

m = maxi∈U (si,µti(ai,µ)) and reformulate (7) as

min
sµ,Aµ

m (8)

s.t. (7a), (7b), (7c), (7d), (7e), (8a)

m ≥ si,µti(ai,µ), ∀i ∈ U , (8b)

Since the constraint (8b) is nonlinear, we first convert it to a

linear constraint. In the µth iteration, the uplink delay for user

i to communicate using RB n is tin,µ = Z

B log2

(

1+
Phi,µ

In,µ+BN0

) ,

so the uplink delay of user i can be represented as ti(ai,µ) =
∑R

n=1 ain,µtin,µ. Thus constraint (8b) can be written as m ≥

si,µ
∑R

n=1 ain,µtin,µ.

Since si,µ ∈ {0, 1}, we discuss it in two situations. 1)

If si,µ = 0, we can get
∑R

n=1 ain,µ = 0 according to

the constraint (7d). Since ain,µ ∈ {0, 1}, we can derive

that ain,µ = 0, n = 1, · · · , R. So
∑R

n=1 ain,µtin,µ =

0 = si,µ
∑R

n=1 ain,µtin,µ. Thus we can get m ≥

si,µ
∑R

n=1 ain,µtin,µ ⇐⇒ m ≥
∑R

n=1 ain,µtin,µ. 2) If si,µ =

1, we can get
∑R

n=1 ain,µtin,µ = si,µ
∑R

n=1 ain,µtin,µ. So

we can derive that m ≥ si,µ
∑R

n=1 ain,µtin,µ ⇐⇒ m ≥
∑R

n=1 ain,µtin,µ. Thus, the constraint (8b) can be reformu-

lated as m ≥
∑R

n=1 ain,µtin,µ, which is a linear constraint.

Considering that the factors that affect the convergence

performance of FL also include the contribution of the user’s

training results to the global model, we further incorpo-

rate this factor into the consideration of the optimization

problem. From the update process formula (3) of the local

model, we can notice that the global model wg
µ will change

λ
Di

∑Di

d=1 ∇l(wg
µ,xid,yid) every time the user trains and the

global model after each round of aggregation is

w
g
µ+1 =

U
∑

i=1

Di

D

(

wg
µ −

λ

Di

Di
∑

d=1

∇l(wg
µ,xid,yid)

)

= wg
µ −

λ

K

U
∑

i=1

Di
∑

d=1

∇l(wg
µ,xid,yid), (9)

it can be seen from (9) that the contribution of the user’s train-

ing results to the convergence of the global model increases

as the gradient calculated by the user increases. Therefore we

are more inclined to schedule users with larger gradients.

In order to consider the gradients calculated by users when

scheduling, we define the gradient calculated by user i in the

µth iteration as gradi,µ = 1
Di

∑Di

d=1 ∇l(wg
µ,xid,yid). By

substituting the penalty item κ
∑

i∈U
‖gradi,µ‖si,µ into (8),

(8) can be represented as

min
sµ,Aµ

m− κ
∑

i∈U

‖gradi,µ‖si,µ (10)

s.t. (7a), (7b), (7c), (7d), (7e), (10a)

m ≥
R
∑

n=1

ain,µtin,µ, ∀i ∈ U . (10b)

We can find that (10) is a mixed integer linear programming

problem and then a branch and bound method is used in

each iteration to dynamically schedule users and allocate

communication resources. The complete system workflow is

detailed as shown in Algorithm 1.

Algorithm 1 FL framework proposed

1: Initialization: global model wg
µ.

2: BS broadcasts the initialized wg
µ to all users.

3: repeat

4: The users calculate the norm of gradient ‖gradi,µ‖
based on the global model received;

5: The users send the norm ‖gradi,µ‖ to the BS;

6: The BS determines sµ,Aµ by solving the problem (10);

7: The BS schedules users and allocates RBs based on

sµ,Aµ;

8: The scheduled users conduct training and send the

training results wl
i,µ to the BS;

9: BS aggregates the received training results from sched-

uled users to update the global model wg
µ, and sends

the updated wg
µ to all users;

10: until The model converges or reaches the maximum

number of iterations.

IV. SIMULATION RESULT

In this section, we consider a wireless communication cell

with the radius of r = 100 m, where a BS is located in

the center of the cell and 20 users are randomly and evenly

distributed in this cell and the moving direction is randomly

selected. The path loss factor of channel gain from mobile

user to BS is 2. The transmit power of each user is set to 30
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dBm and the bandwidth of a RB in the uplink is 50 MHz.

The size of the model transmitted between the user and the

BS is 3 Mbits. The total number of RBs that can be allocated

by the BS is 10. The entire FL system is implemented by

the Tensorflow and sockets. Particularly, the BS cooperates

with users to train a classification model for handwritten digit

recognition on the MNIST data set. The model contains a

Flatten layer with an input dimension of (28, 28); a fully

connected layer containing 128 neurons, which is activated by

the Relu function; a layer with a scale of 0.2 Dropout layer;

and a fully connected output layer containing 10 neurons,

which is activated by the Softmax function. The data set held

by each user contains 3000 samples and the BS schedules

10 users to participate in a round of Global Model update.

In addition, the benchmark is to randomly determine the user

scheduling and resource allocation.

A. Comparison of Scheduled Locations

Fig. 2. Heat map of the user’s scheduled location in the random scheme.

Fig. 3. Heat map of the user’s scheduled location in our scheme.

Fig. 2 and Fig. 3 show the heat map of the user’s scheduled

location in the random scheme and our scheme respectively.

We can see that there is an obvious hot spot in the center of the

cell in Fig. 3 and not in Fig. 2. This is because the difference

of user channel condition impacts the scheduling result by

our proposed scheme and the hot areas show the users with

better channel condition are scheduled frequently. Moreover,

our scheme is more inclined to schedule users with higher

communication rate or the users closer to BS are preferred.

B. Comparison of Model Convergence

Fig. 4. Comparison of the convergence speed (accuracy).

Fig. 5. Comparison of the convergence speed (loss).

We evaluate the convergence speed from the perspective of

validation accuracy and loss in Fig. 4 and Fig. 5, respectively.

It can be seen that the accuracy of the two schemes increases

as the time and the loss of that decreases. After 400 seconds,

the curves gradually stabilized which indicating that the FL

algorithm is gradually converging. The convergence speed of

our proposed scheme is significantly faster. This is mainly

because two reasons, 1) we schedule users who have larger

norm of gradient, which indicating larger step size in every

iteration and therefore fewer iterations; 2) we schedule users

closer to BS, which indicating lower communication delay and

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on May 16,2023 at 08:14:56 UTC from IEEE Xplore.  Restrictions apply. 



therefore lower iteration time. By jointly optimizing the user

scheduling and resource allocation, the convergence time can

be reduced by 41.6%.

C. Comparison of Uplink Delay

Fig. 6. Comparison of the maximum uplink delay.

Fig. 7. Comparison of the cumulative uplink delay.

Fig. 6 and Fig. 7 show the comparison of maximum uplink

communication delay among all users during the training

process from different perspective. We can see that our scheme

out performs random scheme with lower uplink delay and

smaller jitter. This is because we schedule users closer to

BS, which indicates higher SINR we can get and therefore

higher communication rate. Besides, RBs with lower inference

power are allocated to users farther from the BS to reduce the

maximum uplink delay. In addition, by jointly optimizing the

user scheduling and resource allocation, the uplink delay can

be reduced by 68.6% compared with random scheme.

V. CONCLUSION

This paper considers a FL system deployed in a wireless

network and the user scheduling and resource allocation are

jointly optimized to improve the convergence speed. Particu-

larly, a nonlinear problem for minimizing the maximum update

delay is formulated and which is further converted into a mixed

integer linear programming problem. Then, by the branch and

bound algorithm, an optimal user scheduling and resource allo-

cation scheme is achieved. The results show that our proposed

scheme can significantly decrease the convergence time by

41.6% and the uplink communication time is decreased by

68.6%.
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