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Abstract— Internet of Things (IoT) computing offloading is
a challenging issue, especially in remote areas where common
edge/cloud infrastructure is unavailable. In this paper, we present
a space-air-ground integrated network (SAGIN) edge/cloud com-
puting architecture for offloading the computation-intensive
applications considering remote energy and computation con-
straints, where flying unmanned aerial vehicles (UAVs) provide
near-user edge computing and satellites provide access to the
cloud computing. First, for UAV edge servers, we propose a joint
resource allocation and task scheduling approach to efficiently
allocate the computing resources to virtual machines (VMs)
and schedule the offloaded tasks. Second, we investigate the
computing offloading problem in SAGIN and propose a learning-
based approach to learn the optimal offloading policy from
the dynamic SAGIN environments. Specifically, we formulate
the offloading decision making as a Markov decision process
where the system state considers the network dynamics. To cope
with the system dynamics and complexity, we propose a deep
reinforcement learning-based computing offloading approach to
learn the optimal offloading policy on-the-fly, where we adopt
the policy gradient method to handle the large action space and
actor-critic method to accelerate the learning process. Simulation
results show that the proposed edge VM allocation and task
scheduling approach can achieve near-optimal performance with
very low complexity and the proposed learning-based computing
offloading algorithm not only converges fast but also achieves a
lower total cost compared with other offloading approaches.

Index Terms— Computing offloading, edge computing, space-
air-ground, IoT, reinforcement learning.

I. INTRODUCTION

W ITH the rapid development of 5G networks and Inter-
net of things (IoT), a myriad of promising appli-

cations and services have emerged, such as virtual reality,
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HD live streaming, autonomous driving, industry automation,
smart home, and so forth, which reap the benefits provided
by 5G networks, such as ultra-high data rate, low latency,
high reliability, and massive connections [1], [2]. However,
besides efficient and reliable communication, a wide spectrum
of applications also require massive computing capabilities.
For example, virtual reality and HD video streaming require
a large amount of computing resources for rendering and
video encoding/decoding, and the autonomous vehicles rely
on computing for artificial intelligence (AI)-based steering
control. These computation-intensive applications pose great
challenges on the battery and computing capabilities of the
resource-constrained end devices, especially the IoT devices,
which motivates the cloud computing in which computation-
intensive applications are offloaded to the cloud servers with
centralized and abundant computation resources. Although
cloud computing can significantly reduce the computation
delay and the energy consumption of the users, it may fail
to meet the demands of delay sensitive applications, such as
mobile gaming and augmented reality, since the long transmis-
sion distances between end users and the cloud servers result
in long transmission delays. To address this issue, mobile edge
computing (MEC) has been extensively investigated, where the
computing resources in the network edge are employed to pro-
vide efficient and flexible computing services. In 5G wireless
systems, ultra-dense network edge devices will be deployed,
such as macro/small cell base stations and WiFi access points
which can provide exponentially growing amount of edge
computing resources. Many significant issues in MEC have
been extensively investigated, including offloading task
model [3], [4], energy efficiency [5]–[7], latency reduc-
tion [8]–[10], and joint optimization of communication and
computing [11], [12].

However, 5G networks may fail to provide ubiquitous
coverage to suburban and rural areas, where IoT devices
could be widely deployed to execute certain applications
with relatively high computing requirements. For example,
the fusion of sensing information, especially the handling of
high-definition sound or video information, will quickly drain
the battery of the sink nodes and result in large processing
delays. Due to the lack of terrestrial access network coverage,
the typical edge and cloud computing paradigms cannot be
applied in such scenarios. To this end, we propose to employ
the space-air-ground integrated network (SAGIN) architecture
for the computing offloading of remote IoT applications.
SAGIN integrates the satellite network and aerial network
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with the terrestrial network to provide seamless and flexible
network coverage and services to large areas, and thus can
be applied in many promising fields, such as intelligent
transportation system, remote area monitoring, disaster res-
cue, and large-scale high-speed mobile Internet access [13].
SAGIN is a multidimensional heterogeneous network con-
sisting three network segments, i.e., the satellite network,
aerial network, and terrestrial network. Each network segment
possesses different resources and is affected by different
limitations. The Low Earth Orbit (LEO) and geostationary
(GEO) satellites constitute a hierarchical network where LEO
satellites provide high-speed access and GEO satellites relay
the data between LEO for long distance transmission [14].
The aerial network, including flying unmanned aerial vehicles
(UAVs), high latitude platforms (HAPs), and communication
balloons, can be deployed on demand at locations with burst
data traffic to offer high-speed and dynamic network services,
such as dynamic coverage, edge computing, crowdsensing,
etc. [15], [16]. In the proposed SAG-IoT computing offload-
ing architecture, the aerial network nodes can serve as the
flying edge servers, which provides the IoT devices with the
low-delay edge computing. On the other hand, the satellite
communication, although may have lower communication
rate and higher transmission delay, can provide always-on
cloud computing through seamless coverage and satellite back-
bone networks [17]. However, employing the SAGIN in IoT
computing offloading introduces several challenging issues.
Firstly, the high mobility of the aerial network results in
dynamic channel conditions and coverage, leading to varying
server availability and communication delay, which should
be carefully handled to guarantee the performance of the
SAG-IoT system. Secondly, different network segments in
SAGIN possess distinct network conditions and resource con-
straints, and it is non-trivial to design an efficient computing
offloading approach considering the complex and dynamic
network conditions and resources.

In this paper, we present a flexible joint communication
and computation SAGIN framework to provide powerful
edge/cloud computing services to remote IoT users. Under
the framework, we propose an efficient computing offloading
approach which learns on-the-fly the optimal offloading policy
to minimize the weighted sum of delay, energy consump-
tion, and server usage cost, considering the multidimensional
network dynamics and resource constraints. Firstly, the UAV
edge servers’ computation resources are virtualized as vir-
tual machines (VMs) for parallel execution of the offloaded
tasks. We formulate the joint VM resource allocation and
task scheduling problem as a mixed-integer programming
problem and propose an efficient heuristic algorithm to solve
it. Secondly, we investigate the computing offloading prob-
lem in SAGIN, which is formulated as a Markov decision
process (MDP). To learn the network dynamics, a model-free
reinforcement learning (RL)-based approach is proposed, and
an actor-critic learning algorithm is designed to handle the
large state and action spaces. To the best of our knowledge,
our work is the first work to study the computing offloading
problem in SAGIN, which validates the feasibility of SAGIN
supporting computation-intensive applications for remote

IoT users, and can provide useful guidelines for SAGIN
network design and remote computing offloading.

The main contributions of the paper can be summarized as
follows.

• We formulate the SAG-IoT computing offloading prob-
lem as an MDP and propose an RL-based approach to
efficiently solve the problem. The system state is defined
to integrate the historical network information to learn
the system dynamics. In addition, a policy gradient-
based actor-critic learning algorithm is proposed to cope
with problem of dimensionality curse and accelerate the
learning speed.

• We adopt network virtulization to flexibly allocate the
resources of the edge server. We formulate the joint
edge server VM computation resource allocation and
task scheduling problem as a mix-integer programming
problem, and propose an effective heuristic algorithm to
solve it.

• The performance of the proposed approaches are evalu-
ated through extensive simulations. The joint VM allo-
cation and task scheduling can achieve near-optimal per-
formance with low complexity. In addition, the perfor-
mance of the proposed RL-based computing offloading
approach is evaluated with respect to design parameters.

The remainder of the paper is organized as follows.
In Section II, we present the related work. Section III
describes the system model. In Section IV, the joint edge
VM allocation and task scheduling problem is formulated
and solved. Section V formulates the SAG-IoT computing
offloading problem, followed by the RL-based solution in
Section VI. Section VII evaluates the proposed approaches,
and Section VIII concludes the paper. Useful notations used
throughout the paper are listed in Table I.

II. RELATED WORK

A. Mobile Edge Computing

The concept of MEC was originally proposed by ETSI
in [18], in which the motivation, definition, architecture,
and challenging issues are discussed. In edge computing,
the computation task offloading mechanism determines the
overall performance of the MEC system. The energy-efficient
computation offloading is crucial for energy-constraint IoT
devices, and has been studied in [5] and [6]. In [5],
Mahmoodi et al. studied the joint scheduling and computation
offloading problem and proposed a real data measurement
based optimization method to save the energy consumption
of the mobile users. In [6], Mao et al. proposed a Lyapunov
method-based dynamic computation offloading for devices
with energy harvesting. The execution cost which jointly
considers the execution latency and task failure is taken as the
performance metric. In MEC system, the energy consumption
and task delay rely not only on the task processing, but also on
the communication of the related data of the task. Therefore,
the joint optimization of the communication radio resources
and the computing offloading has attracted much research
attention [11], [12]. In [11], You et al. studied the resource
allocation for multiuser MEC offloading problem considering

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on May 16,2023 at 03:22:49 UTC from IEEE Xplore.  Restrictions apply. 



CHENG et al.: SPACE/AERIAL-ASSISTED COMPUTING OFFLOADING FOR IoT APPLICATIONS 1119

TABLE I

NOTATIONS USED IN THE PAPER

TDMA and OFDMA scenarios. In [12], Wu et al. studied the
multi-access-assisted computing offloading, and presented a
joint optimization of computation task scheduling and radio
resource allocation. However, these works only focus on the
fixed MEC scenario, i.e., the edge computing services are
provided by cellular BSes or WiFi APs, which is different from
our work where flying UAVs serve as the mobile edge servers.
In [19], a mobile edge computing mechanism is proposed
via a UAV-Mounted cloudlet. The bit allocation and UAV
trajectory are jointly designed to minimize the mobile energy
consumption by solving a non-convex optimization problem.
Different from [19], we consider both the energy consumption
and task processing delay. In addition, the UAV trajectories are
learnt instead of designed for the scenarios where the UAVs
are not deployed by network operators and the trajectories are
unknown in advance.

B. Space-Air-Ground Integrated Network

SAGIN is envisioned as a promising technology to address
many problems in future mobile communication networks,
such as remote and large-scale coverage, growth of mobile
data, uneven data traffic, and rigid backbone networks, and
has recently attracted much attention from both academia
and industry. Different SAGIN architecture is discussed
in [20], [21]. In [20], Hoang et al. studied the optimal
energy allocation problem in SAGIN and proposed a learning-
based algorithm to optimize the network performance and
maximize the service providers’ revenue. In [21], Zhang et al.
proposed a software-defined SAGIN architecture and dis-
cussed the challenging issues therein. The edge caching is
employed in SAGIN to reduce the content retrieval delay
and offload the backbone networks. In [22], Chen et al.
proposed an optimal content caching scheme to place content
at UAVs by considering the user’s information and the content
request distribution. However, the study of edge computing
offloading and computation resource allocation considering the
cooperation of space, aerial, and ground network segments is
still missing in the literature, which is important for supporting
a myriad of computing-intensive applications in SAGIN.

Fig. 1. An overview of the SAG-IoT architecture.

III. SYSTEM MODEL

A. Network Model

We consider a remote area where IoT devices are deployed
to conduct certain tasks with computation requirements, such
as monitoring and video surveillance. In the considered remote
area, there is no cellular coverage, and therefore we consider
a space-air-ground integrated network (SAGIN) to provide
network functions, such as network access, edge comput-
ing and caching, to the IoT devices. The overview of the
SAG-IoT network is shown in Fig. 1. In the SAG-IoT network,
there are three network segments, i.e., the ground segment,
the aerial segment, and the space segment. The IoT devices
compose the ground segment and have very limited energy
and computing capabilities. The applications running at the
IoT devices may generate data to upload and computing tasks
to execute. In the aerial segment, the flying UAVs can serve
as edge servers to provide ground users with edge caching
and computing capabilities. The flying UAVs, such as the
Facebook Aquila, can fly for months without charging by using
solar panels [23]. The UAVs are configured with fixed flying
trajectories to serve the considered area. Furthermore, in the
space segment, one or more LEO satellites provide the full
coverage of the area of interest, and connect the IoT devices
with the cloud servers through the satellite backbone network.
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For the IoT device (user) i, it has the local computing
capability of Cl, which is assumed identical for all users. The
energy consumption for locally task computing/processing is
denoted by El, which is related to Cl. The power consumption
for transmission to UAV and satellite is denoted by Ee

i and
Ec

i , respectively. In the edge servers, i.e., UAVs, the computing
resources are virtulized as VMs, each for one specific appli-
cation [24]. In edge server k, the total computation resource
is Ce, the resources allocated to the computation VM v is
denoted by Ce

v , and the server usage cost of the computation
VM for user i’s task j is denoted by Be

i,j . For the UAV-ground
communication, since we consider the task offloading decision
making, which is with much longer time scale than traditional
resource scheduling time (1 ms), only large-scale channel
fading is considered. In addition, since the instantaneous chan-
nel information is not required, a satellite controlled global
decision making is feasible. According to [25], the pathloss
between the UAV and the ground users follows

L(r, h) = 20 log
(4πfc(h2 + r2)

1
2

c

)
+ PLoS(r, h)ηLoS

+ (1− PLoS(r, h))ηNLoS , (1)

where h and r denote the UAV flying altitude and the
horizontal distance between the UAV and the ground user,
respectively. ηLoS and ηNLoS denote respectively the additive
loss incurred on top of the free space pathloss for LoS
and NLoS links [26]. fc denotes the carrier frequency, and
c denotes the speed of light. PLoS is the line-of-sight proba-
bility of UAV-ground link, which can be calculated by

PLoS(r, h) =
1

1 + a exp(−b(arctan(h
r )− a))

. (2)

(a, b, ηLoS, ηNLoS) are environment-dependent variables. For
instance, in remote areas, their values are (4.88, 0.43,
0.1, 21) [27]. In addition, the UAV-ground communication
uses WiFi protocols with total bandwidth B. If n IoT devices
communicate with a UAV simultaneously, the bandwidth each
IoT device obtains is calculated by

Bi = ρBξ(n) (3)

where ρ is the WiFi throughput efficiency factor, and ξ(n) is
the WiFi channel utilization function which is a decreasing
function of contenting user number n. Thus, the instant
UAV-ground and ground-UAV data rate can be calculated by

rGU = ρBξ(n) log2(1 +
Ee

i 10−Li/10

σ2
), (4)

and

rUG = ρBξ(n) log2(1 +
Ee−

i 10−Li/10

σ2
), (5)

respectively, where Ee−
i denotes the UAV transmit power

to ground IoT users, Li denotes the pathloss for the corre-
sponding IoT user-UAV link, and σ2 denotes the power of
the Gaussian noise. For the satellite-ground communication,
we consider a constant communication data rate rSG, which
is usually smaller than the UAV-ground date rate. The satellite
is connected to the Internet/cloud through the satellite back-
bone network. We denote the transmission rate between the

satellite and the cloud by rSC . The cloud has much higher
computing capability than IoT devices and edge servers, and
the processing rate for each task is denoted by Cc, and the
usage cost for user i’s task j is denoted by Bc

i,j .

B. Multi-User Multi-Task SAG-IoT Computing Offloading

We consider that there are M IoT users and N differ-
ent computation applications, and each user is running all
N applications, leading to M × N computation tasks in the
system. We also consider that the N applications have certain
priorities, in the way that if multiple tasks are scheduled
simultaneously, the task with smaller application number will
be transmitted/processed earlier than those with larger appli-
cation numbers. For j-th application, the size of the input
data, the output data, and the workload are denoted by Hin

j ,
Hout

j and Zj , respectively. These tasks can be executed locally
at the IoT devices. However, due to the limited energy and
computing capability of IoT devices, the computing tasks can
also be offloaded to the UAV edge servers or further to the
cloud through the satellites. The offloading decision is made
in each time slot until all the M × N tasks are completed.
At the beginning of time slot t, the remaining tasks are denoted
by a M × N matrix M(t), where the element mi,j(t) = 1
indicates task Wij has not completed, and mi,j(t) = 0
otherwise. Denote decisions of locally processing the tasks,
offloading the tasks to edge, and offloading the tasks to cloud
at time slot t by M × N matrices Xl(t), Xe(t), and Xc(t),
respectively, and each binary element xl

ij(t), xe
ij(t), and xc

ij(t)
indicates whether task Wij is processed locally, offloaded to
the edge, or offloaded to the cloud, respectively. Note that task
Wij can be scheduled to at most one means at time t, i.e., the
offloading decision is constrained by

xl
ij(t), x

e
ij(t), x

c
ij(t) ∈ {0, 1}, (6)

xl
ij(t) + xe

ij(t) + xc
ij(t) ≤ mij(t). (7)

The inequality in (7) holds when an unfinished task is
not scheduled at time slot t. If the task Wij is processed
locally or offloaded to the cloud at time t, we consider the
task can be finished with a certain delay, and mi,j(t+1) = 0.
However, if Wij is offloaded to the UAV edge server, it may
not be completed and return to user i successfully at the end
of t, which is due to two reasons. Firstly, if multiple tasks are
offloaded to one UAV edge server, some of them may not be
able to be completed within the time slot; secondly, since the
UAVs are moving, when task Wij is completed in the edge
server, the result cannot be transmitted to user i if user i is
out of the coverage area of the UAV.

C. Cost Model

The computing task offloading is to minimize the sys-
tem cost of executing the M × N tasks. In the considered
SAG-IoT system, the system cost is composed of two parts,
i.e., the delay cost and the energy and server usage cost.

1) Delay Cost: If the task Wij is scheduled at time slot t,
the delay can be calculated according to the offloading deci-
sion. If the task is scheduled to process locally, the delay is

T l
ij = ε(t− 1) + tlr,i +

Zj

Cl
, (8)

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on May 16,2023 at 03:22:49 UTC from IEEE Xplore.  Restrictions apply. 



CHENG et al.: SPACE/AERIAL-ASSISTED COMPUTING OFFLOADING FOR IoT APPLICATIONS 1121

where ε is the length of the time slot, and ε(t−1) is the elapsed
time since the generation of the task. Due to the low computing
capability of IoT devices, it is likely that at the beginning
of time slot t, there are some tasks which are scheduled to
locally process yet not finished. tlr,i is the time for user i
to complete the remaining local processing tasks, which can
be calculated by the remaining local workload divided by the
local processing capability Cl. If the task is offloaded to the
UAV edge server, and the result is returned to user i within
time slot t, the total delay of the task can be calculated by

T e
ij = ε(t− 1) + de

ij +

∑j
a=1 xe

i,a(t)Hin
a

rGU
+

Hout
j

rUG
. (9)

where de
ij denotes the processing delay of Wij in the

UAV edge server, which depends on the offloading decision
and VM resource allocation in the server as described in
Section IV. If multiple tasks of user i are scheduled to the edge
server,

∑j
a=1 xe

ia(t)Hin
a calculates the time for transmitting

Wij task data to the server considering the transmission of
tasks with higher priorities. Similarly, if the task is offloaded
to the cloud through the satellite, the delay is calculated by

T c
ij = εt +

Zj

Cc
+

Hin
j + Hout

j

rSG
+

Hin
j + Hout

j

rSC
. (10)

2) Energy and Server Usage Cost: The energy cost of
locally processing Wij can be calculated by

Ll
ij = El Zj

Cl
(11)

If at time slot t, task Wij is offloaded to the UAV edge server
and the result is successfully transmitted to user i, the energy
and server usage cost can be calculated by

Le
ij = Ee

i

v∑

t=1

xe
ij(t)

Hin
j

rGU (t)
+ αBe

ij , (12)

where α represents the weight of the UAV server usage cost

over the IoT user energy consumption.
∑v

t=1 xe
ij(t)

Hin
j

rGU (t)
calculates the total energy consumption considering the case in
which former times of offloading of the task to a UAV edge
server failed to return within the scheduling slot. Similarly,
if task Wij is offloaded to the cloud, the energy and server
usage cost can be calculated by

Lc
ij =

Ec
i H

in
j

rSG
+ βBc

ij , (13)

where β denotes the weight of cloud server usage cost over
the IoT user energy consumption.

IV. COMPUTATION VM ALLOCATION

In time slot t, multiple tasks may be offloaded to one UAV
edge server. In such a scenario, these tasks are executed in
different VMs in parallel to reduce the processing latency.
One VM executes the tasks belonging to a specific application.
We therefore study a VM allocation problem to allocate the
edge server computation resources to different VMs consid-
ering the tasks offloaded to the edge server. In addition, due
to the mobility of UAVs, some users may lose connection

Fig. 2. An example of joint VM allocation and task scheduling for UAV
edge server.

with the UAV quickly, and thus executing such tasks may
lead to excessive resource allocated to the corresponding VM.
For example, in Fig. 2, two VMs are considered to execute
the offloaded tasks to the UAV edge server, and ti,j is the
delay requirement of task j in VM i. We can see that the
delay requirement t2,1 is very strict and a larger amount of
computation resource should be allocated to VM2 to finish the
corresponding task before deadline. However, since the total
computation resource of an edge server is fixed, it is likely
that little resource allocated to VM1, and none of the three
tasks in VM1 can be finished in time. Therefore, we jointly
optimize the VM allocation and task scheduling in the UAV
edge server to reduce the system sum delay.

In the considered problem, there are multiple kinds of
applications (Apps), denoted by A = {1, . . . , N}, and one
UAV edge server with computation capability C cycles/s.1 For
m-th App, there might be multiple offloaded tasks, denoted by
Tm = {1, . . . , Nm}, which has same computation workload
but different maximum delay requirements. Note that Zm

denotes the computation workload of m-th App’s tasks. C =
{cm | m ∈ A} denotes the computation resource variables,
where cm is the computation resource allocated to the VM exe-
cuting App m. Y = {ym,n | m ∈ A, n ∈ Tm} denotes the
decision variables on task execution, where ym,n = 1 if
task n of App m is scheduled and executed, and ym,n = 0
otherwise. Therefore, our sum delay minimization problem can
be formulated as follows.

min
C,Y

N∑

m=1

Nm∑

n=1

[

ym,n

n∑

k=1

ym,k
Zm

cm
+ ε (1− ym,n)

]

s.t. C1:
n∑

k=1

ym,k
Zm

cm
� tm,n, ∀m ∈ A, ∀n ∈ Tm

C2:
M∑

m=1

cm � C

C3: cm � 0
C4: ym,n ∈ {0, 1} , ∀m ∈ A, ∀n ∈ Tm (14)

where tm,n is the delay requirement of task n of App m and
ε is the length of the time slot. tm,n can be calculated by

tm,n = min(tlc, ε) (15)

where tlc is the time when the user who offloads this task loses
connection with the UAV. C1 restricts the maximum delay for

1Here we use C instead of Ce for simplicity.
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each task if it is executed at current time slot. C2 limits that
the total computation resources of VMs cannot exceed C.

It can be seen that Problem (14) is a mixed-integer pro-
gramming that is difficult to solve. It involves the continuous
variable C and 0-1 integer variable Y. Even though we
assume C is known, the residual subproblem is still a quadratic
problem with 0-1 integer constraints, which is NP-hard with
non-definite matrix [28], [29]. This problem is commonly
reformulated by specific relaxation approach and then solved
by powerful convex optimization techniques. However, this
method performs extensive iterations and reveals little insight
about scheduling policy. Thus, we are motivated to design an
efficient low-complexity algorithm to obtain the suboptimal
solution. In the proposed VM allocation and task scheduling
algorithm, we assume for each VM m, the delay requirements
for Nm tasks have been sorted, i.e., tm,n ≤ tm,n+1. At the
beginning, we try to allocate cm as if all tasks had been
scheduled, i.e., ym,n = 1, ∀m ∈ A, ∀n ∈ Tm. The allocation
results would be

cm = min{nZm

tm,n
}, ∀m ∈ A, ∀n ∈ Tm. (16)

Given the allocation results, if
∑M

m=1 cm > C, it means not all
tasks can be scheduled. Therefore, we choose not to schedule
the task with the most harsh delay requirement, i.e., let

ym,n = 0, (17)

where

m, n = argmax
m,n

nZm

tm,n
, ∀m ∈ A, ∀n ∈ Tm. (18)

Then, we calculate the VM allocation cm again. Repeat this
process until the condition

∑M
m=1 cm ≤ C is satisfied, and the

VM allocation cm and task scheduling Y is obtained. Note
that for a generic Y, the VM allocation is calculated by

cm = min{
∑

n ym,nZm

tm,n
}, ∀m ∈ A, ∀n ∈ Tm, (19)

and the unscheduled task selection is calculated by

m, n = arg max
m,n

∑
n ym,nZm

tm,n
, ∀m ∈ A, ∀n ∈ Tm. (20)

The full algorithm of edge server VM allocation and task
scheduling is shown in Algorithm 1. From the algorithm,
we can see that the worst case (the cloud cannot finish any
offloaded task in time) requires N ′(N ′ + 1)/2 comparisons
where N ′ is the number of total offloaded tasks to the UAV
edge server. Even the worst case complexity O(N ′2) is very
low, and therefore the proposed algorithm can work efficiently
in the dynamic SAGIN environment.

V. COMPUTATION OFFLOADING PROBLEM FORMULATION

We design an online computing offloading approach for the
SAG-IoT system, in which at each time slot the computing
tasks of IoT devices are scheduled to process locally, offloaded
to the UAV edge server, or offloaded to the cloud server
through the satellite, in order to minimize the total system
cost in terms of the delay of the tasks, the energy consumption

Algorithm 1 VM Allocation and Task Scheduling in Edge
Server
1: Input: C, Tm, tm,n, ε.
2: Output: VM allocation cm, task scheduling Y.
3: Initialize ym,n = 1 ∀m, n, and cm according to (19).
4: while

∑M
m=1 cm > C do

5: Update ym,n according to (17) and (20).
6: Update cm according to (19).
7: end while
8: return

of the IoT users, and the edge and cloud server usage costs.
This can be achieved by modeling the computing offloading
decisions as an MDP.

An MDP is defined by a tuple (S, A, T, R), where S is
the set of possible system states, A is the set of actions,
T = {p(s′|s, a)} is the set of transition probabilities, and
R : S × A �→ R is a real-value reward (or cost) function
when the system is at state s ∈ S and an action a ∈ A is
taken. A policy π is a mapping from S to A. The MDP of the
SAG-IoT computing offloading problem is defined as follows.

1) States: at the beginning of time slot t, the network state is
defined as M(t)⊗Tr(t)⊗PL(t)⊗PL(t−1)⊗PL(t−2)⊗· · ·⊗
PL(t−tq), where Tl

r(t) = {tl1(t), tl2(t), . . . tlM (t)} represents
the remaining time for each user to complete locally process-
ing tasks, and PL(t) = {PL1(t), PL2(t), . . . , PLM (t)} is
the vector of pathloss values of all users to their associ-
ated UAV. The system state includes the pathloss information
of the current and the previous tq time slots in order to learn
and predict the pathloss information.

2) Actions: at the beginning of time slot t, the system
takes the action of scheduling the tasks of the users, i.e., to
determine the matrices Xl(t), Xe(t), and Xc(t), or equally,
to determine xl

ij , xe
ij , and xc

ij , ∀i, j. Therefore, we denote
a(t) = {Xl(t),Xe(t),Xc(t)}. Clearly, at time slot 0, there
are 4MN possible actions, which is a very large number when
M and N are large.

3) Transition probability: since the UAV-user pathloss is not
affected by the actions, the system transition probability can
be calculated by

p(st+1|st, at) = p(PL(t + 1)|PL(t))· (Tl
r(t + 1)|Tl

r(t), at)
· p(M(t + 1)|M(t), at). (21)

Specifically, if the UAV trajectory and the flying speed are
planned to be fixed, p(PL(t + 1)|PL(t)) is 1 with a specific
PL(t+1) and 0 otherwise. However, due to the uncertainties
in the UAV mobility, p(PL(t + 1)|PL(t)) will be difficult to
model. Tl

r(t + 1) can be calculated by

T l
r,i(t + 1) = max{T l

r,i(t) +
N∑

j=1

xl
ij(t)

Zj

Cl
− ε, 0}. (22)

For p(M(t + 1)|M(t), at), it is difficult to model accurately.
For example, if a task is offloaded to a UAV edge server,
whether the task can be complete within the time slots depends
on the UAV data transmission rate, UAV computation resource
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allocation, other users’ decision, and UAV mobility, which are
dynamic and correlated.

4) Reward: To minimize the weighted sum of delay, energy,
and server usage cost, we use the cost function C(st, at) =∑

ij Ci,j(st, at) at time slot t, where Ci,j(st, at) is the cost
function of task Wij , which is calculated in the following way.

1) if mij(t) = 0, the task has already completed, and thus
Cij(st, at) = 0.

2) if mij(t) = 1 and xl
ij + xe

ij + xc
ij = 0, the task is

not scheduled in this time slot, and thus a delay of ε
is introduced. We define the cost function Cij(st, at) =

iε, where 
i is user i’s weight on the delay.

3) if mij(t) = 1 and xl
ij + xe

ij + xc
ij = 1, Cij(st, at) =


i(xl
ij(T

l
ij−εt)+xe

ij(T
e
ij−εt)+xc

ij(T
l
ij−εt))+xl

ijL
l
ij+

xe
ijL

e
ij + xc

ijL
l
ij .

Define the value function V of state s as the expected long-
term discounted cost starting from s with policy π, i.e.,

V (s|π) = E

[ ∞∑

t=0

γtC(st, at)|s0 = s, π

]

, (23)

where γ ∈ [0, 1] is a discount factor, and the expectation is
taken over all possible state trajectories starting from s. The
online computing offloading approach is to select an optimal
policy π∗, which minimizes the value function of each state,
i.e.,

π∗(s) = argmin
a

∑

s′
p(s′|s, a)[C(s, a) + γV (s′|π∗))]. (24)

VI. RL-BASED OFFLOADING DECISION MAKING

In problem (24), the reward function and transition prob-
abilities are difficult to model accurately due to the UAV
mobility and dynamic VM allocation of UAV edge servers.
In addition, with the increasing system scale, i.e., M and N ,
the exponentially growing system state space makes the system
intractable. Therefore, the proposed online computing offload-
ing problem can be solved by model-free RL-based methods,
such as Q-learning [30] and policy gradient methods [31].
Although Q-learning methods have shown great potentials in
solving RL problems with a large state space, it usually cannot
efficiently deal with problems with large or even continuous
action spaces, which is the case in problem (24). Therefore,
in this paper, we propose an online computing offloading
approach for the SAG-IoT system by adapting the policy
gradient method.

In the proposed online computing offloading approach,
the policy is parameterized by a vector θ ∈ Rd,
i.e., π(a|s, θ) = P (at = a|st = s, θt = θ), for the
probability that action a is taken when the system is in state s
at time t, under the policy with parameter θ. If θ is defined
for each feature of the state, i.e., each element in M(t),
T r(t), and PL(t), the length of vector θ is M(N + tq + 2).
To learn the policy parameter, we first define the performance
measure of θ, which is denoted by J(θ). Since the online
computing offloading problem is episodic (an episode ends
when all MN tasks are finished), we define the performance
measure as the total discounted cost of the episode of com-
puting all tasks. Denote by τ a trace of state-action sequence

s0, a0, s1, a1, stmax , atmax in an episode following π(·|·, θ),
where tmax denotes the preset value indicating the possible
maximum number of time slots for processing all tasks. Then,
we can have J(θ) as the value function of the start state s0:

J(θ) .= Vπθ
(s0) = Eπθ

[
tmax∑

k=0

γkC(sk, ak)|π(·|·, θ)]. (25)

To learn the policy parameter θ which minimizes J(θ), intu-
itively, we can use the gradient descent method to gradually
update θ by

θt+1 = θt − ϕ∇J(θt). (26)

where ϕ represents the learning rate. According to the policy
gradient theorem [32], we have

∇J(θt) = Eπ [
∑

a

qπ(st, a)∇θπ(a|st, θ)]

= Eπ [
∑

a

π(a|st, θ)qπ(st, a)
∇θπ(a|st, θ)

π(a|st, θ)
]

= Eπ [qπ(st, at)
∇θπ(at|st, θ)

π(at|st, θ)
]

= Eπ [Gt
∇θπ(at|st, θ)

π(at|st, θ)
]. (27)

Note that qπ(s, a) is the state-action value function for pol-
icy π, and Gt = Ct + γCt+1 + γ2 Ct+2 . . . is the discounted
return of cost. Using the above, we can then update θ by

θt+1 = θt − ϕGt
∇θπ(at|st, θ)

π(at|st, θ)
. (28)

However, although such a update method (which is referred
to as REINFORCE method [33]) can converge to a local
minimum asymptotically, it usually leads to high variance and
learns slowly. In the online SAG-IoT computing offloading,
both state space and action space are large, and therefore
REINFORCE method may not be suitable. To further improve
the learning performance, we thus employ the actor-critic
method in which the approximations to both policy and value
functions are learned [34]. In actor-critic method, the policy is
updated in each time slot instead of every episode of the com-
puting offloading. Therefore, the number of samples required
to learn the optimal policy can be reduced dramatically, which
accelerates the learning process. To achieve this, we need to
learn the value function and use it as a critic to guide the
update of policy at each time slot. Specifically, denote by
V̂ (st, ω) the estimation of the value function of state st, where
ω ∈ Rm is the parameter vector to fit the value function. Then,
in each time slot t, the update of θ can be done by

θt+1 =θt−ϕ(Ct+γV̂ (st+1, ω)−V̂ (st, ω))
∇θπ(at|st, θ)

π(at|st, θ)
.

(29)

Note that in each time slot, the parameter vector ω of the
estimated value function V̂ is also updated according to

ωt+1 = ωt − ϕ′∇ωL(ω), (30)
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where ϕ′ is the learning rate, and the loss function L(ω) is
defined as

L(ω) = |V̂ (st, ω)− (Ct + γV̂ (st+1, ω))|2. (31)

Finally, motivated by the capability of deep neural networks
to approximate complex functions, we employ deep learning
architecture to learn the policy in terms of θ and the estimated
state-value function. The full proposed online computing
offloading approach for SAT-IoT is shown in Algorithm 2,
where ϕ and ϕ′ are learning rates for the actor and the critic,
respectively.

Algorithm 2 Deep Actor-Critic Based Online Computing
Offloading

1: Input: IoT user information: location, Cl, El, Ee
i , Ee−

i and
Ec

i

UAV edge server information: mobility traces, Ce
v , Be

ij , B
Cloud related information: rSG, rSC , Cc, Bc

ij

Task information: Hin, Hout, Z
2: Output: Optimal computing offloading decision X(t)
3: Randomly initialize critic network V̂ (s, ω) and actor net-

work π(s, a|θ)
4: for episode = 1, G do
5: Initialize a random vector N as the noise for action

exploration
6: Observe the initial state s1

7: for time slot t = 1, tmax do
8: select action ar,t = π(s|θ) +Nt

9: execute at and observe the cost Ct and state st+1

10: η ← Ct + γV̂ (st+1, ω)− V̂ (st, ω)
11: update ω ← ω − ϕ′η∇ωV̂ (st, ω)
12: update θ ← θ − ϕηγt ∇θπ(at|st,θ)

π(at|st,θ)
13: end for
14: end for
15: return

The implementation of the proposed RL-based offloading
approach is shown in Fig. 3, which is composed of the
SAGIN environment, the computing offloading reward eval-
uator, an actor network, a critic network, and a temporal-
difference component. The system state can be observed from
the current SAGIN environment, which is then sent to the input
of the actor network and the critic network. The actor network
generates the action a according to a = πθ(s), and updates
the policy θ. It can be easily seen that at time slot t, for an
arbitrary task Wij , the decision xij(t) has four possibilities,
i.e., not scheduled, process locally, offload to edge, and offload
to cloud. Therefore, we map these four possible decisions of
to xij integer 0, 1, 2, 3 respectively, and design two output
layers of the actor network, i.e., σ and μ, which can compose
M ×N normal distributed random variables to represent the
actions of each task. The critic network estimates the value
function V̂ (st, ω) and updates the parameter ω. The reward
of a state-action pair is evaluated by the reward evaluator,
and is used to calculate the temporal-difference (TD) η =
Ct + γV̂ (st+1, ω)− V̂ (st, ω), which is used in the update of
the policy parameter θ and the critic network parameter ω.

TABLE II

SIMULATION PARAMETERS

VII. PERFORMANCE EVALUATION

A. Simulation Configurations

In this section, we evaluate the proposed joint VM resource
allocation and task scheduling scheme for the UAV edge
server, and the RL-based online computing offloading
approach for SAG-IoT system. In the simulation, we consider
a remote 1 km × 1 km square area with M = 30 IoT
users fixed deployed in this area. The IoT user runs N = 5
different applications and thus each user has 5 tasks to process.
We select ARM Cortex-M based IoT devices as the ground
users. Referring to [35] and [36], we set the IoT device
computing capability Cl to 200 MC/s (MC = 106 cycles), and
the energy consumption for local task processing is 141 mW.
As defined in [37], the transmission and reception power of
IoT users with UAVs and satellites, i.e., Ee, Ee−, and Ec

are set to 200 mW. 5 UAVs are serving as the flying edge
servers for the IoT computing. UAV movement trajectories are
planned to maximize the minimum throughput which follows
Wu et al.’s work [38] with adopting practical UAV-ground
propagation channels (1). Referring to [39], the edge server’s
computation resource Ce is set to 3 GC/s (GC = 109 cycles),
while the cloud server’s computation resource assigned to each
task, i.e., Cc, is set to 10 GC/s. For satellite and remote cloud,
we consider within one episode of computing offloading, there
is one LEO satellite providing the full coverage to the area,
and the satellite-ground communication rate rSG is set to
10 Mbps which is the average observed transmission rate in
the high throughput satellite communication system ViaSat-1.
The satellite-cloud data rate is also constrained by the satellite-
ground transmission rate, and therefore we set rSC = rSG =
10 Mbps. Different computation tasks may have different
computation to data ratios; however, for the simulation sim-
plicity we choose x264 VBR encode computation to data ratio,
which is 1300 cycles/byte, i.e., Z = 1300Hin [40]. Hin

j and
Hout

j are randomly chosen between 5 MB and 15 MB, and
between 1 MB and 5 MB, respectively. We set the usage
cost of edge server/cloud server, i.e., Be

ij and Bc
ij to the CPU

cycles to execute tasks Wij , i.e., Wij ’s workload. In addition,
α = 10−10 J/cycle, β = 4 × 10−10 J/cycle, and 
i = 1 J/s
for each user i. The detailed simulation parameters are shown
in Table. II unless otherwise specified.

B. VM Computing Resource Allocation and Task Scheduling

We first evaluate the proposed VM computing resource
allocation and task scheduling algorithm. We compare the
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Fig. 3. RL-based computing offloading approach. The proposed approach implements two components, i.e., one actor network to update the policy, and one
critic network to evaluate the value function and guide the update of offloading policy.

heuristic algorithm with ‘Brute-force’ method and ‘Random’
method. In ‘Brute-force’, exhaustive search is used to find
the optimal unscheduled tasks, which achieves the upper-
bound performance but is with high computing complexity.
In ‘Random’, unscheduled tasks are randomly selected.

Fig. 4 shows the delay performance of the proposed algo-
rithm. In Fig. 4(a), the average delay with respect to the UAV
edge server computing resource Ce is shown. We can see from
the figure that with the increase of Ce, the average delay of
the three methods decrease, because with higher computing
server capability, the average processing time will be reduced,
and thus more tasks can be scheduled to satisfy their delay
requirements. In Fig. 4(b), the average delay with respect to
the total number of tasks offloaded to the considered edge
server is shown, when Ce is set to 10 GC. It can be seen that
a larger number of tasks lead to increasing average delay, since
more tasks contend for the limited computing resources, and
fewer tasks can complete in time. In both figures, the proposed
heuristic algorithm can achieve a very close performance
with that of the ‘Brute-force’ method, which demonstrates the
efficiency of the proposed algorithm.

Fig. 5 shows the comparison of the run time between the
proposed heuristic algorithm and the ‘Brute-force’ method.
We can see from the figure that with the increasing num-
ber of total tasks, the run time of ‘Brute-force’ method
increases exponentially. This is because ‘Brute-force’ method
uses exhaustive search and a larger number of tasks leads
to an exponentially growing searching space. In opposite,
the run time of the proposed heuristic algorithm remains very
small when the number of tasks increases. The zoomed-in
run time for the proposed heuristic algorithm shows clearly a
quadratic increase on run time when the number of offloaded
tasks increase, which validates our analysis in Section IV.

To summarize, the proposed VM computing resource alloca-
tion and task scheduling algorithm can simultaneously achieve
near-optimal performance and very low computational com-
plexity, and therefore is suitable to allocation UAV edge server
resources under dynamic network conditions.

C. Deep RL-Based IoT Computing Offloading

In this part, the performance of the proposed RL-based
SAG-IoT computing offloading approach is evaluated and
compared. To show the efficiency of our proposed approach,
we explicitly compare it with two other computing offloading
approaches, i.e., ‘Random’ and ‘Greedy on edge’, which are
described as follows.

1) ‘Random’: each task randomly selects a time slot t ∈
{1, 2, . . . , tmax}, and an offloading decision (locally,
edge, cloud).

2) ‘Greedy on edge’: since the edge computing can usually
provide a lower computing delay and relatively low
price, each user will offload all tasks to the UAV edge
server if it is within the coverage of a UAV. Otherwise,
the user decides to wait, process locally, or offload to
cloud with certain probabilities. In the simulation, we set
the probabilities to 0.8, 0.1, and 0.1, respectively.

Fig. 6 shows the convergence performance of the proposed
RL-based computing offloading algorithm. The total cost is
calculated by the summation of the cost of each task, which
is the weighted sum of delay, energy consumption, and server
usage cost. It can be seen that the algorithm converges very fast
from the fact that at about 10-th episode the algorithm already
converges. The high convergence rate stems from the adopted
actor-critic algorithm in which the critic network judges and
guides the actor network to learn the policy in each time
slot, instead of in each episode for non-actor-critic policy
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Fig. 4. Performance of the proposed VM computing resource allocation and
task scheduling algorithm.

Fig. 5. The run time comparison.

gradient methods. The fast convergence of the algorithm can
bring many benefits, such as fast reconfiguration if more users
and application are deployed, more flexibility in a dynamic
environment, and so forth.

Fig. 7 shows the performance of the proposed computing
offloading approach with respect to the UAV server usage

Fig. 6. Convergence performance of our proposed algorithm.

Fig. 7. Total cost v.s. α.

cost weight α. It can be seen that the proposed RL-based
approach can achieve the lowest total cost than the other
approaches since it can learn the optimal offloading policy
through interactions with the environments. ‘Greedy’ approach
suffers the most total cost among the three approaches. This is
because ‘Greedy’ approach forces many tasks content for the
UAV channel and edge server computation resources, which
increases the times to complete the tasks. In addition, due
to the mobility of UAVs, within the time duration in which
the task is processing (including the upload, processing, and
transmission of the results), the UAV may fly away and the
user loses the connection.

In Fig. 8, the main components of the cost, i.e., energy
consumption (E + B · α(or β)) and weight delay (
T ) are
shown. It can be seen that the proposed computing offloading
approach can achieve the lowest energy consumption and the
lowest delay due to the learnt optimal offloading policy. The
reason that ‘Random’ approach achieves the similar total delay
as RL-based scheme is that in RL-based scheme, more energy
is consumed in transmitting the tasks to the satellite, and in
Random scheme, more energy is consumed in locally process-
ing the tasks due to longer local process delay since more
tasks are process locally with ‘Random’ approach (as shown
in Fig. 10). However, the ‘Greedy’ approach has very high
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Fig. 8. The energy consumption and weighted delay.

Fig. 9. Total cost v.s. β.

Fig. 10. Offloading means selection.

energy consumption and delay, which is due to that failed
execution of tasks in UAV edge servers leads to multiple
uploads of the same tasks, and thus it consumes a large amount
of energy of the IoT devices and leads to prolonged delay.

Fig. 9 shows the total cost with respect to the cloud server
usage cost weight β. Comparing the three approaches, it can
be seen the proposed RL-based computing offloading approach

Fig. 11. Total cost v.s. �.

can achieve the lowest average total cost in an episode. The
total cost increases with β because the increase of β leads
to the increase of βBc which is a component of the total
cost. It can also be seen that the total cost of the proposed
approach increases faster the other two approaches, which is
because in the current setting of the simulation, the satellite-
cloud offloading can achieve relatively better performance
than local processing and UAV, if properly chosen. Therefore,
the proposed approach learns the environments and chooses
cloud offloading with higher probability. This fact can be
seen in Fig. 10, which shows the number of selections of
each offloading means for each offloading approach. For the
proposed approach, it selects satellite-cloud more frequently
over the other two offloading means. Compared to satellite-
cloud, the local processing results in longer delay due to week
local computation capability, while the UAV-edge may suffer
the contention problem and high UAV mobility, although it
has the benefits of high transmission rate and low server
usage cost. The ‘Random’ and ‘Greedy’ approaches select
almost the same number of local processing and satellite-
cloud. The ‘Greedy’ approach selects more times of UAV-edge
since it may wait for the future UAV connection with a high
probability if the UAV is current unavailable.

Fig. 11 shows the total cost with respect to the weight on the
delay, i.e., 
. With the increase of 
, the total cost of all the
three offloading approach increase, due to the increase of 
T ,
which is the delay component of the total cost. However,
the proposed offloading approach can achieve the lowest total
cost and lower increase rate among the three approaches since
it can learn from the environment an optimal policy to reduce
the total task delay.

VIII. CONCLUSION

In this paper, we have investigated the IoT computing
offloading problem in SAGIN. We have proposed a joint
VM allocation and task scheduling mechanism to efficiently
allocate the computing resources to different VMs in the
UAV edge server. To offload the computation-intensive tasks,
we have proposed an RL-based computing offloading approach
to handle the multidimensional SAGIN resources and learns
the dynamic network conditions. Deep neural networks, policy
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gradient, and actor-critic methods have been employed to
improve the learning performance. Simulation results have
validated the convergency and efficiency of the proposed
approaches. Our work can offer valuable insights to the
important yet underexplored field of edge/cloud computing in
SAGIN. In the future, we will focus on jointly optimizing the
communication, caching, and computing resources in SAGIN.
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